你在这里

庞加莱

主标签

庞加莱

李醒民

(中国科学院科技政策与管理科学研究所)

庞加莱,J. H.(Poincaré, Jules Henri)1854年4月29日生于法国南锡;1912年7月17日卒于巴黎.数学、物理学、天体力学、科学哲学.

庞加莱的父亲莱昂(Léon,Poincaré)是一位第一流的生理学家兼医生、南锡医科大学教授,母亲是一位善良、聪明的女性.庞加莱的叔父安托万(Antoine,Poincaré)曾任国家道路桥梁部的检查官.庞加莱的堂弟雷蒙(Raymond,Poincaré)曾于1911年、1922年、1928年几度组阁,出任总理兼外交部长.1913年1月至1920年初,担任法兰西第三共和国第九届总统.

庞加莱的童年是不幸的,也未表现出什么超人的天才.在幼儿时,他的运动神经共济官能就缺乏协调,写字画画都不好看.5岁时,白喉病把他折磨了9个月,从此就留下了喉头麻痹症.疾病使他长时期身体虚弱,缺乏自信.他无法和小伙伴作剧烈的游戏,只好另找乐趣,这就是读书.在这个广阔的天地里,他的天资通过家庭教育和自我锻炼逐渐显露出来.读书增强了他的空间记忆(视觉记忆)和时间记忆能力.他视力不好,上课看不清老师在黑板上写的东西,只好全凭耳朵听,这反倒增强了他的听觉记忆能力.这种“内在的眼睛”大大有益于他后来的工作,他能够在头脑中完成复杂的数学运算,他能够迅速写出一篇论文而无需大改.

15岁前后,奇妙的数学紧紧地扣住了庞加莱的心弦,他曾在没有记一页课堂笔记的情况下赢得了一次数学大奖.1873年底,庞加莱进入综合工科学校深造.1875年,他到国立高等矿业学校学习,打算做一名工程师,但一有闲空就钻研数学,并在微分方程一般解的问题上初露锋芒.1878年,他向法国科学院提交了关于这个课题的“异乎寻常”的论文,并于翌年8月1日得到数学博士学位.由于工程师的职业与他的志趣不相投,他又想做一个职业数学家.在得到博士学位后不久(1879年12月1日),他应聘到卡昂大学作数学分析教师.两年后,他提升为巴黎大学教授,讲授力学和实验物理学等课程.除了在欧洲参加学术会议和1904年应邀到美国圣路易斯科学和技艺博览会讲演外,庞加莱一生的其余时间都是在巴黎度过的.

庞加莱的写作时期开始于1878年,直至他1912年逝世——这正是他创造力的极盛时期.在不长的34年科学生涯中,他发表了将近500篇科学论文和30本科学专著,这些论著囊括了数学、物理学、天文学的许多分支,这还没有把他的科学哲学经典名著和科普作品计算在内.由于他的杰出贡献,他赢得了法国政府所能给予的一切荣誉,也受到英国、俄国、瑞典、匈牙利等国政府的奖赏.早在33岁那年,他就被选为法国科学院院士,1906年当选为院长;1908年,他被选为法兰西学院院士,这是法国科学家所能得到的最高荣誉.

庞加莱被认为是19世纪最后四分之一和本世纪初期的数学界的领袖人物,是对数学和它的应用具有全面了解、能够雄观全局的最后一位大师.他的研究和贡献涉及数学的各个分支,例如函数论、代数拓扑学、阿贝尔函数和代数几何学、数论、代数学、微分方程、数学基础、非欧几何、渐近级数、概率论等,当代数学不少研究课题都溯源于他的工作.

1.函数论.如果说18世纪是微分学的世纪,那么19世纪则是函数论的世纪.庞加莱是因发明自守函数而使函数论的世纪大放异彩的,他本人也因此在数学界崭露头角.

所谓自守函数,就是在某些变换群的变换下保持不变的函数.自守函数是圆函数、双曲函数、椭圆函数以及初等分析中其他函数的推广,它不仅对其他各种应用是重要的,而且在微分方程理论中也扮演着主要的角色.

自守函数的名称今天已用于包括那些在变换群z′=(az+ b)/(cz+d)或这个群的某些子群作用下的不变函数,其中a,b, c,d可以是实数或复数,而且ad-bc=1.此外,在复平面的任何有限部分上,这个群完全是不连续的.更一般的自守函数则是为研究二阶线性微分方

1880年以前,F.克莱因(Klein)在自守函数方面作了一些基本的工作,后来他在1881年至1882年与庞加莱合作.庞加莱在受到I.L.富克斯(Fuchs)有关工作的吸引而注意到这件事后,对这个课题已作了先行的工作.他以椭圆函数理论为指导,发明了一类新的自守函数,即他所谓的富克斯函数,这是比椭圆函数更为普遍的一类自守函数.后来,庞加莱把分式变换群扩充到复系数的情况,并考虑了这种群的几种类型,他把这种群叫克莱因群.对这些克莱因群,庞加莱得到了新的自守函数,即在克莱因群变换下不变的函数,庞加莱把它叫做克莱因函数.这些函数有类似于富克斯型函数的性质,但基本域比圆要复杂.此后,庞加莱指出如何借助于克莱因函数表示仅有正则奇点的代数系数的n阶线性方程的积分.这样,整个这类线性微分方程都可以用庞加莱的这些新的超越函数来解了.

自守函数理论只是庞加莱对于解析函数论的许多贡献之一,他的每项贡献都是拓广的理论的出发点.他在 1883年的一篇短文中首先研究整函数的格与其泰勒展开的系数或者函数的绝对值的增长率之间的关系,它与皮卡(E.Picard)定理结合在一起,通过J.阿达玛(Hadamard)和 E.波莱尔(Borel)的结果,导致了整函数和亚纯函数的庞大理论,这个理论在80年之后仍然尚未研究完.

自守函数提供了具有某种奇点的解析函数的头一批例子,它们的奇点构成非稠密的完备集或奇点的曲线.庞加莱给出另外一个一般方法构成这种类似的函数,即通过有理函数的级数,这导致后来被波莱尔和A.当儒瓦(Denjoy)所提出的单演函数理论.代数曲线的参考化定理也是自守函数论的一个结果,它促使庞加莱在1883年导出一般的“单值化定理”,这等价于存在由任意连通、非紧致黎曼面到复平面或开圆盘的共形映射.

尤其是,庞加莱是多复变解析函数的创始人,这理论在他之前实际并不存在.他得到的第一个结果是这样的定理:两个复变量的亚纯函数F是两个整函数的商.在1898年,他针对“多重调和函数”对于任意多复变函数进行了深入的研究,并在阿贝尔函数论中加以应用.他还在1907年指出了全新的问题,导出两个复变函数的“共形映射”概念的推广,这就是现在众所周知的、给人以深刻印象的解析流形的萌芽.庞加莱也对多复变函数的重积分的“残数”概念给出满意的推广,这是在其他数学家早期对这个问题作了多次尝试而揭示出严重困难之后进行的.多年后,他的思想在J.勒雷(Leray)的工作中产生了完满的结果.